Search results

Search for "liquid water" in Full Text gives 23 result(s) in Beilstein Journal of Nanotechnology.

Humidity-dependent electrical performance of CuO nanowire networks studied by electrochemical impedance spectroscopy

  • Jelena Kosmaca,
  • Juris Katkevics,
  • Jana Andzane,
  • Raitis Sondors,
  • Liga Jasulaneca,
  • Raimonds Meija,
  • Kiryl Niherysh,
  • Yelyzaveta Rublova and
  • Donats Erts

Beilstein J. Nanotechnol. 2023, 14, 683–691, doi:10.3762/bjnano.14.54

Graphical Abstract
  • interconnects (Figure 3e) and condensation of liquid water in pores. The correlation of the equivalent circuit elements with RH can be analyzed to assess their suitability for potential application as sensor units. For example, R2 shows a more pronounced decrease with the increase of RH above 50% than R1
PDF
Album
Full Research Paper
Published 05 Jun 2023

Carbon nanotube-cellulose ink for rapid solvent identification

  • Tiago Amarante,
  • Thiago H. R. Cunha,
  • Claudio Laudares,
  • Ana P. M. Barboza,
  • Ana Carolina dos Santos,
  • Cíntia L. Pereira,
  • Vinicius Ornelas,
  • Bernardo R. A. Neves,
  • André S. Ferlauto and
  • Rodrigo G. Lacerda

Beilstein J. Nanotechnol. 2023, 14, 535–543, doi:10.3762/bjnano.14.44

Graphical Abstract
  • sensing, as electromagnetic shielding, and as thermoelectric material [32][33][34][35][36][37][38]. Also, Qi et al. reported a liquid-water sensor based on carbon nanotube–cellulose composite films, and, more recently, Goodman et al. reported the scalable manufacturing of nanocomposites for liquid sensing
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

Atmospheric water harvesting using functionalized carbon nanocones

  • Fernanda R. Leivas and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2023, 14, 1–10, doi:10.3762/bjnano.14.1

Graphical Abstract
  • Fernanda R. Leivas Marcia C. Barbosa Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970, Porto Alegre, RS, Brazil 10.3762/bjnano.14.1 Abstract In this work, we propose a method to harvest liquid water from water vapor using carbon nanocones. The condensation
  • water. The cactus for example has spikes where droplets move from the tip to the base, or from the higher to the lower Laplace area. One mechanism developed by nature to capture liquid water from water vapor is present in the Namibian desert beetle, which collects water from morning steam in the desert
  • [17]. This beetle has hydrophilic spots on its back, which transform vapor into liquid water. For the collection to be efficient, below the hydrophilic spots, its wings are hydrophobic, and the captured water moves from hydrophilic to hydrophobic parts driven by gravity. The efficiency of this process
PDF
Album
Full Research Paper
Published 02 Jan 2023

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • result, (liquid) water is injected into the oven. This requires the immediate deactivation and exchange of the tuyère because abruptly evaporating water may cause major destruction in and around the furnace. Tuyère failure entails the shutdown of the blast furnace (in fact, it is the main reason for
  • are crucial for the persistence of the liquid/water interface and that the underlying physics is too complex for making straightforward assumptions and predictions about successful surface designs. Despite – or perhaps because of – the problems of the theoretical approach, more experimentally oriented
PDF
Album
Perspective
Published 17 Nov 2022

The role of sulfonate groups and hydrogen bonding in the proton conductivity of two coordination networks

  • Ali Javed,
  • Felix Steinke,
  • Stephan Wöhlbrandt,
  • Hana Bunzen,
  • Norbert Stock and
  • Michael Tiemann

Beilstein J. Nanotechnol. 2022, 13, 437–443, doi:10.3762/bjnano.13.36

Graphical Abstract
  • of covalent bonds and hydrogen bonds between adjacent molecules, without mass transport [25]. For bulk liquid water, this is known as the Grotthuß mechanism, with reported activation energy values of 0.10–0.11 eV [26][27]. In the materials studied here, proton hopping can occur between H2O/H3O+ and
  • /or deprotonated/protonated sulfonate groups (–SO3−/–SO3H) within the crystals. Spatial confinement may hinder proton hopping to some extent, which is why activation energies larger than in bulk liquid water are frequently observed in such materials (up to 0.4 eV) [25]. In contrast, when proton
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2022

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • liquid water can still slip even when the attraction between water and the solid wall is strong [67][68]. Besides the solid–water interaction energy, water slippage is also determined by the spatial distribution of water molecules within the contact layer on solid surfaces [68][69]. Under the condition
  • of same water–solid interaction energy, for the case with more uniform and more compact distribution of water molecules near solid surfaces, liquid water can slip more easily. Otherwise, for the case with more isolated and corrugated distribution, the migration of liquid water molecules is more
PDF
Album
Review
Published 17 Nov 2021

Surface-enhanced Raman scattering of water in aqueous dispersions of silver nanoparticles

  • Paulina Filipczak,
  • Krzysztof Hałagan,
  • Jacek Ulański and
  • Marcin Kozanecki

Beilstein J. Nanotechnol. 2021, 12, 497–506, doi:10.3762/bjnano.12.40

Graphical Abstract
  • selective enhancement of Raman signals from the samples. Previous studies showed that the RRE in liquid water directly corresponds to its supramolecular structure. It was also reported that the electric-field-induced orientation of water molecules on the electrode surface results in the surface-enhanced
  • average size of 34 ± 14 nm. The temperature experiment results showed a higher enhancement with temperature increase. Performed simulation studies revealed a slowdown of the mobility of the water molecules close to the surface of AgNPs. Keywords: Dynamic lattice liquid (DLL) simulations; liquid water
  • the world and a vital substance for every living organism. Despite being so abundant, water is still not an entirely known substance [2][3]. Raman spectroscopy is a very useful technique to study the water structure and molecular interactions in liquid water [4]. Analyses of Raman spectra of water in
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • sample is subject to surface tension, which can lead to damage of the specimen during imaging. To overcome this issue, researchers typically focus on removing any liquid water from a sample whilst, at the same time, maintaining the cellular integrity. This is usually achieved by chemical fixation
PDF
Album
Review
Published 04 Jan 2021

Biocompatible organic–inorganic hybrid materials based on nucleobases and titanium developed by molecular layer deposition

  • Leva Momtazi,
  • Henrik H. Sønsteby and
  • Ola Nilsen

Beilstein J. Nanotechnol. 2019, 10, 399–411, doi:10.3762/bjnano.10.39

Graphical Abstract
  • towards gaseous water during growth. However, neither of the systems are sufficiently stable towards liquid water. To further study the effect of water on the film properties, films deposited without the additional water pulse were immersed in water for 15 minutes, three hours and four days. The thickness
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

The inhibition effect of water on the purification of natural gas with nanoporous graphene membranes

  • Krzysztof Nieszporek,
  • Tomasz Pańczyk and
  • Jolanta Nieszporek

Beilstein J. Nanotechnol. 2018, 9, 1906–1916, doi:10.3762/bjnano.9.182

Graphical Abstract
  • hydrated ions and liquid water with porous graphene [12]. Sun et al. [7] studied the purification of natural gas using nanoporous graphene with the help of classical molecular dynamics. Similarly to most papers that deal with the application of nanoporous graphene, they demonstrated that the efficiency of
PDF
Album
Full Research Paper
Published 02 Jul 2018

Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces

  • Sven Oras,
  • Sergei Vlassov,
  • Marta Berholts,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2018, 9, 660–670, doi:10.3762/bjnano.9.61

Graphical Abstract
  • ° and θTL = 60° [36] are the static contact angles of the liquid on substrate (–NH2) and tip, respectively and γLV = 7.28 × 10−2 N/m is the liquid (water) surface tension. For the given values the capillary forces are around 7 nN. From Equation 2, it can be deduced that for the low humidity there is no
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Humidity-dependent wound sealing in succulent leaves of Delosperma cooperi – An adaptation to seasonal drought stress

  • Olga Speck,
  • Mark Schlechtendahl,
  • Florian Borm,
  • Tim Kampowski and
  • Thomas Speck

Beilstein J. Nanotechnol. 2018, 9, 175–186, doi:10.3762/bjnano.9.20

Graphical Abstract
  • were measured in terms of the relative bending angle over 55 minutes under various humidity conditions. The higher the relative air humidity, the lower the bending angle. Negative bending angles were found when a droplet of liquid water was applied to the wound. The statistical analysis revealed highly
  • values of relative humidity can be associated with fog and the liquid water droplets with rain. The fast sealing of injuries in order to prevent dehydration might be an effective adaptation and selective advantage for D. cooperi plants growing in such semi-arid habitats. An additional aspect that may
  • direct application of a droplet of liquid water onto the fissure. First, different absolute amounts of water are present in the air (at 100% r.h.: 19.41 g/m³ of water) or in the droplet consisting of liquid water with small quantities of dissolved gas. Second, water accessibility is different, that is
PDF
Album
Supp Info
Full Research Paper
Published 16 Jan 2018

Vapor deposition routes to conformal polymer thin films

  • Priya Moni,
  • Ahmed Al-Obeidi and
  • Karen K. Gleason

Beilstein J. Nanotechnol. 2017, 8, 723–735, doi:10.3762/bjnano.8.76

Graphical Abstract
  • polymers on nylon membranes to be used in membrane distillation [2]. Conformal film coverage of the membrane microstructure is essential to prevent the wetting of liquid water, a critical property for this application. As seen in Figure 7a and Figure 7b, the overall structure of a nylon membrane before and
  • after coating by iCVD shows little to no change. However, coated membranes can withstand water pressures upwards of 100 kPa before liquid water leakage whereas uncoated membranes are immediately soaked upon contact with water (0 kPa). In this work, the combination of SEM imaging with final device
PDF
Album
Review
Published 28 Mar 2017

Surface-enhanced infrared absorption studies towards a new optical biosensor

  • Lothar Leidner,
  • Julia Stäb,
  • Jennifer T. Adam and
  • Günter Gauglitz

Beilstein J. Nanotechnol. 2016, 7, 1736–1742, doi:10.3762/bjnano.7.166

Graphical Abstract
  • finding is the shift of the water absorption peak maximum in the presence of Ag nanoparticles in comparison to spectra of liquid water. In our measurements we have a peak maximum at about 3420 cm−1 for pure water in the absence of nanoparticles, which is in good agreement with published values. After
  • , no value of the peak maximum is given and the peak shift is not addressed in the text. The discussions about the basic model of liquid water are still controversial [17][18][19], and will not be repeated here. However, the observed spectra suggest that there is an interaction between metallic
PDF
Album
Full Research Paper
Published 16 Nov 2016

Hydration of magnesia cubes: a helium ion microscopy study

  • Ruth Schwaiger,
  • Johannes Schneider,
  • Gilles R. Bourret and
  • Oliver Diwald

Beilstein J. Nanotechnol. 2016, 7, 302–309, doi:10.3762/bjnano.7.28

Graphical Abstract
  • definition specific to the MgO cubes. Comparison of different regions within one sample before and after exposure to liquid water reveals different transformation processes, such as the formation of Mg(OH)2 shells that act as diffusion barriers for MgO dissolution or the evolution of brucite nanosheets
  • material above the defects and the surface are unaffected [16]. We performed exploratory experiments to address the impact of liquid water on thermally activated MgO cubes. A comparison was performed on sample spots having cubes of different sizes put in contact with a water droplet (Figure S4, Supporting
  • Information File 1). The sample position characterized by the image in Figure 5 shows larger MgO cubes before (Figure 5a) and after 17 h of exposure to liquid water (Figure 5b). In that case the material exhibits the morphological changes discussed above, i.e., the evolution of a conformal hydroxide layer on
PDF
Album
Supp Info
Full Research Paper
Published 29 Feb 2016

Stiffness of sphere–plate contacts at MHz frequencies: dependence on normal load, oscillation amplitude, and ambient medium

  • Jana Vlachová,
  • Rebekka König and
  • Diethelm Johannsmann

Beilstein J. Nanotechnol. 2015, 6, 845–856, doi:10.3762/bjnano.6.87

Graphical Abstract
  • method is closely analogous to related procedures in AFM-based metrology. The real part of the contact stiffness as a function of normal load can be fitted with the Johnson–Kendall–Roberts (JKR) model. The contact stiffness was found to increase in the presence of liquid water. This finding is
PDF
Album
Full Research Paper
Published 30 Mar 2015

Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells

  • Roswitha Zeis

Beilstein J. Nanotechnol. 2015, 6, 68–83, doi:10.3762/bjnano.6.8

Graphical Abstract
  • electrode surface were observed. Despite their different appearances, the sprayed and coated electrodes exhibit similar cell performances. The absence of liquid water in the system is one of the most important differences compared with LT-PEMFCs. The distribution of the polymer binder in the electrodes and
  • ]. Synchrotron X-ray radiography and tomography – acid distribution in HT-PEMFCs Synchrotron X-ray radiography had been successfully applied to LT-PEMFCs for visualization of liquid water profiles under different operating conditions. It was also straightforward to extend the same technique to the studies of
PDF
Album
Review
Published 07 Jan 2015

The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness

  • Daniel Gandyra,
  • Stefan Walheim,
  • Stanislav Gorb,
  • Wilhelm Barthlott and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2015, 6, 11–18, doi:10.3762/bjnano.6.2

Graphical Abstract
  • filled with liquid. Using reverse action tweezers fixed on a stepper motor, the trichome is vertically descended onto the surface of the liquid (water). (b) After touching the liquid, the subsequent removal of the hair results in the formation of a meniscus. As the tip is pulled upwards, the meniscus
PDF
Album
Video
Full Research Paper
Published 02 Jan 2015

Direct observation of microcavitation in underwater adhesion of mushroom-shaped adhesive microstructure

  • Lars Heepe,
  • Alexander E. Kovalev and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 903–909, doi:10.3762/bjnano.5.103

Graphical Abstract
  • hypothesized that the enhanced underwater adhesion may be a result of cavitation under each individual MSAMS when entrapped water in the contact area is subjected to a negative pressure (tension) during pull-off and the liquid water turns into vapor at a certain cavitation threshold [19]. This effect would
  • individual MSAMS partially detached from a glass substrate with the gap between the MSAMS and glass being filled with liquid water, not with air (for details see Experimental section: Image formation and simulation). The gap was, for simplicity, simulated as a Gaussian-like shape with its maximum separation
  • the gap filled with liquid water was, for simplicity, chosen Gaussian-like with a maximum separation of 150 nm in the middle of the contact (see graph at top of the simulated image). The simulation parameters are given in Table 1. Note that around the maximum separation in the middle of the contact
PDF
Album
Full Research Paper
Published 25 Jun 2014

Nanoscale particles in technological processes of beneficiation

  • Sergey I. Popel,
  • Vitaly V. Adushkin and
  • Anatoly P. Golub'

Beilstein J. Nanotechnol. 2014, 5, 458–465, doi:10.3762/bjnano.5.53

Graphical Abstract
  • ) filled with a liquid (water) heated up to the boiling temperature. It is known that, in the process of heterogeneous boiling, the bubbles in a liquid nucleate and grow mostly on foreign inclusions: dust particles, roughnesses of the vessel walls, etc. Therefore, ore microparticles will serve as natural
  • in the bubble may be an important factor in determining the dynamics of the bubble compression. The dynamics of cavitation bubble was calculated under the following assumptions to simplify the problem: (1) The liquid, water, is incompressible with a density of ρl = 1 g/cm3 and the boiling temperature
  • micrometers, which are obtained when developing the low-grade deposits and reprocessing the ore dumps and tailings. A conceptual design of a device for cavitation separation of gold-bearing particles. (1) Cavitation chamber with liquid (water) containing ore microparticles; (2) plunger providing shock loading
PDF
Album
Full Research Paper
Published 11 Apr 2014

Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

  • Pavel V. Komarov,
  • Pavel G. Khalatur and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2013, 4, 567–587, doi:10.3762/bjnano.4.65

Graphical Abstract
  • affordable for our systems, which are very large. The dispersion correction term was used because it is known that the inclusion of van der Waals interactions systematically improves the density of liquid water [94]. All the technical parameters (γD, K, etc.) of the hybrid CPMD/BOMD method were selected as
  • recommended in [95], where static and dynamical properties of liquid water were studied. The QMD computations were performed on 1024 nodes of the supercomputer "Lomonosov". Given the high computational cost of a QMD simulation, the initial configuration of the ion-conducting channel (Figure 10) was first pre
  • ][99][100]. In the Zundel cation, the proton mainly resides in between two water molecules, H2O…H+…OH2. The Eigen cation consists of a hydronium core symmetrically solvated by three additional water molecules [96][97][98][99][100]. In liquid water or other hydrogen bonded liquids, the description of
PDF
Album
Full Research Paper
Published 26 Sep 2013

Influence of the solvent on the stability of bis(terpyridine) structures on graphite

  • Daniela Künzel and
  • Axel Groß

Beilstein J. Nanotechnol. 2013, 4, 269–277, doi:10.3762/bjnano.4.29

Graphical Abstract
  • the simulations, the influence of these effects should be negligible. Results and Discussion Validation step 1: liquid densities As a first test case, the densities of liquid water and 1,2,4-trichlorobenzene (TCB) are considered, yielding an indication as to whether the intermolecular interactions
  • cohesive energy, is also relatively independent of the system size. In systems of 10 to 700 water molecules, the cohesive energy remains at −365 to −369 meV. With smaller systems, the cohesive energy decreases: With five molecules representing liquid water, it drops to −404 meV. We also checked the
  • , it is important to note that liquid water is only poorly reproduced by the force fields considered in this study due to problems with the reliable description of intermolecular hydrogen bonds and liquid densities. For TCB on the other hand, the force-field results are reasonably accurate, possibly
PDF
Album
Full Research Paper
Published 22 Apr 2013

The description of friction of silicon MEMS with surface roughness: virtues and limitations of a stochastic Prandtl–Tomlinson model and the simulation of vibration-induced friction reduction

  • W. Merlijn van Spengen,
  • Viviane Turq and
  • Joost W. M. Frenken

Beilstein J. Nanotechnol. 2010, 1, 163–171, doi:10.3762/bjnano.1.20

Graphical Abstract
  • surface asperities [26]. The static shear strength itself is determined by OH-bridging forces between the surfaces, direct chemical Si–O–Si bonds between the surfaces (the rupturing of these bonds leads to wear of the surfaces in the long run), and/or possibly liquid water meniscus strain or even gluing
PDF
Album
Full Research Paper
Published 22 Dec 2010
Other Beilstein-Institut Open Science Activities